Australian cotton growers are some of the best in the world, achieving yields well in excess of world averages and also producing some of the best fibre quality cotton. This makes Australian cotton attractive to merchants and spinners around the globe.

The modern Australian cotton industry has grown from humble beginnings with its roots in the Namoi valley of north-west New South Wales, to a professional, technologically advanced industry spanning from Central Queensland into Victoria.

In recent years, the industry has seen substantial expansion into areas once thought impractical to cotton growing. At present, two thirds of Australian cotton is grown in New South Wales and the remainder grown in Queensland. Through plant breeding and advances in biotechnology, the Australian cotton industry has been expanding into new regions, including south of the Victorian border and north into the Flinders River in the Gulf of Carpentaria and the Ord Irrigation Scheme in Western Australia.

Irrigated production makes up the majority of Australian cotton. Currently, irrigated cotton accounts for the majority of annual production, however, in recent seasons the popularity of cotton as a dryland crop has seen an increase in the area planted to dryland cotton.

This booklet is an introductory guide for those who are new to growing cotton or are interested in discovering more about cotton production.

Further information, resources and tools including a gross margin calculator are available at www.acresofopportunity.com.au
CONTENTS

Pre-season – before you plant .. 4
Planting and establishment ... 10
Effect of temperature on establishment 11
Pest control .. 14
Irrigate to minimise plant stress 17
Monitor to manage the crop ... 18
Flowering to cut-out is a critical time 20
Harvest/picking ... 21
Post crop control ... 22
Contact .. 23

IRRIGATED COTTON GUIDE
It’s important to complete ground and field preparation early. In surface irrigated systems, beds need to be of sufficient height to allow for good drainage, and furrows need to be of sufficient capacity to move runoff water out of the field after rainfall. Cotton can also be grown successfully under pivots and lateral irrigators.

Completing any cultivations and fertiliser applications early will also enable a smooth transition into the planting operation, and allow the maximum amount of time to accumulate moisture into the soil profile.

Row spacing will vary depending on the farming operation; however most equipment is set up to cater for varying widths. It’s important to consider that some cotton equipment, especially pickers, are a standard 2 m wheel spacing, although the heads can be moved to handle a minimum row spacing of 75 cm.

Create a firm, consolidated seed bed. Planting is a critical operation in the cotton farming system and every effort should be made to ensure that the seed is given every opportunity to establish.

A well-consolidated bed is less likely to slump, and will allow for more accurate seed placement and lessen the likelihood of seed sinking when irrigation water is applied.

It’s good farming practice to service all machinery, pumps and ring tanks to ensure they are in good condition and to avoid breakdowns. In a cotton-farming system, some operations are time-sensitive, so there is tangible value in having machinery prepared and running before the planting season by having it serviced early.

It is important to investigate cotton-ginning and marketing organisations for the processing and marketing of your cotton crop, prior to planting. There are many options available to market your cotton, including the opportunity to forward sell. Remember that you will produce two commodities with each cotton crop – the lint and the seed – both of which can provide lucrative returns if marketed wisely.

A list of cotton merchants operating in Australia is available at: http://austcottonshippers.com.au/about-acsa/merchant-members
Neighbourhood relationships

Cotton is particularly sensitive to phenoxy herbicides (2,4-D), suffering growth distortion, fruit loss and delayed maturity from even very small concentrations drifting onto the crop. It is important to talk to your neighbours, particularly those within a couple of kilometres, about your intentions to plant cotton.

CottonMap (www.cottonmap.com.au) allows growers, consultants and spray contractors to plot cotton fields online so you and your neighbours are aware of the location of nearby cotton fields when spraying.

If required, it’s important to engage outside assistance to help manage the crop. This can include a crop consultant (agronomist) and contractors for time sensitive farm operations (e.g. planting, picking, spraying). Where possible, these should be organised prior to planting.

A good cotton consultant will assist you with the management of the cotton crop, from planting to picking. Their knowledge is in ensuring that the crop is managed without stresses throughout the season. Cotton consultants help with forecasting crop requirements, variety selection, planting, fertiliser requirements and application, irrigation timing, insect and weed scouting and control, and crop defoliation. Even the most experienced cotton growers utilise the services of cotton consultants.

It’s also critical to decontaminate any spray rig equipment that has been used for application of phenoxy herbicides before you start the cotton season. A check needs to be made with all spraying contractors to ensure adequate decontamination has been conducted. All rubber hoses, O-rings, gaskets and seals should be replaced as harmful chemicals can be drawn back into solution by some solvents used in other chemical products.
Pre-season – Before You Plant

Nutritional requirements

Cotton requires a good supply of both macro- and micronutrients to produce high yields. Most soils require the application of nitrogen (N), phosphorus (P) and potassium (K), and some growers will need to apply zinc (Zn) and other micronutrients.

Fertiliser should be applied in a timely manner, to ensure availability for plant uptake before periods of peak nutrient demand. Regular soil testing, with accurate interpretation of the results, is valuable when assessing soil nutrient levels prior to planting.

Samples are best taken from May to August, ideally from varying depths of the soil profile. In-crop measurements should be conducted to reassess crop requirements during the season.

Nutrient requirements should be budgeted on soil and crop tests, and on crop requirements and yield target.

Nutrient use efficiency can be boosted through careful fertiliser application. Your cotton consultant can give you advice on the most appropriate rate, product, timing and application method. A popular nitrogen application technique is to apply 60% up front and then 40% in-crop. There are a number of different application techniques for nutrient application - your cotton consultant can advise you on the most appropriate method for your situation.

Don’t let nutrition be a yield limiting factor. Careful monitoring and management of nutrient levels is important to ensure yield potential is reached, without inefficient fertiliser application. Without regular monitoring, nutrition deficiencies may not be identified until symptoms appear - which may be too late. At that point, a reduction in yield is likely, despite remedial fertiliser applications.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Nutrient</th>
<th>Maximum uptake rate (per day)</th>
<th>Percentage taken up during flowering</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg/ha</td>
<td>N</td>
<td>4.5</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>1.3</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>4.0</td>
<td>89</td>
</tr>
<tr>
<td>g/ha</td>
<td>Zn</td>
<td>2.9</td>
<td>100</td>
</tr>
</tbody>
</table>

Figure 1: Maximum nutrient uptake rate and timing of the nutrient of the whole crop.
Source: Australian Cotton Production Manual
Table 1. Nutrient removal at various yield levels in bales/ha (1 bale = 227kg). Source: Rochester (2014).

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Yield: bales/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td>kg/ha</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>65</td>
</tr>
<tr>
<td>P</td>
<td>14</td>
</tr>
<tr>
<td>K</td>
<td>22</td>
</tr>
<tr>
<td>S</td>
<td>6</td>
</tr>
<tr>
<td>Mg</td>
<td>8</td>
</tr>
<tr>
<td>Ca</td>
<td>3</td>
</tr>
<tr>
<td>g/ha</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>112</td>
</tr>
<tr>
<td>Mn</td>
<td>9</td>
</tr>
<tr>
<td>B</td>
<td>28</td>
</tr>
<tr>
<td>Zn</td>
<td>72</td>
</tr>
<tr>
<td>Cu</td>
<td>16</td>
</tr>
</tbody>
</table>

Placement of fertiliser is very important, as root burn can occur if fertiliser is placed too close to the root system. It’s recommended that nitrogen be applied 10 cm to the side of the plant line, and additional nitrogenous fertiliser deposited below the line of the bottom of the furrow, in order to prevent nutrients leaching laterally from the field with irrigation water. Phosphorus and potassium can be placed under the plant line, but should be far enough away to not cause root burn.

Figure 2: Schematic placement of fertiliser
Select the right variety and seed treatment

Selecting a cotton variety that has the right regional and production type fit is a very important decision. Cotton Seed Distributors (CSD) has a range of varieties available, which should be selected based on:

1. Yield in your area and production type
2. Disease tolerances
3. Resilience in fibre quality
4. Technology choice
 b) Roundup Ready Flex® can be sprayed over-the-top with Roundup Ready® Herbicide with PLANTSHEILD® by Monsanto and/or Roundup Ready® PL Herbicide with PLANTSHEILD® Technology. The technology has revolutionised cotton production providing an exceptional weed control system offering flexibility to control weeds as and when they appear.
 c) Bollgard® 3: is the latest generation technology that offers excellent control of Helicoverpa, the main cotton pest within Australia. It offers three modes of action for control and reduces the need for broad spectrum insecticide sprays. The resistance management plan includes a wider cotton planting window, reduced refuge area and more flexible pupae busting requirements.
5. Other traits such as determinacy, leaf shape and season length should also be considered.

Your consultant or CSD Extension and Development Agronomist (www.csd.net.au/contact) will be able to assist you in making an educated decision on what variety and technology mix will suit your specific situation.

The relevant CSD Grower Agreement and Bayer (trading as Monsanto Australia Pty Ltd) Technology User Agreement (TUA) need to be completed prior to ordering and receiving seed on farm. Cotton planting seed within Australia cannot be purchased without both these agreements in place as a requirement of the government regulations. The agreements can be obtained from your local cotton seed supplier, who will have further information on how to order seed. There are some accreditation processes which are required to ensure growers are aware of the crop management plans for technologies.

There are many pests and diseases which impact on cotton crops. Seed treatments are available to give some early season protection against disease and insects. Bion® is an additional choice that can ‘turn on’ the cotton plant’s natural defence mechanisms and provide increased resistance to some pathogens, particularly during the establishment phase of a crop’s life. Growers should consult with their cotton consultant to select a suitable seed treatment based on expected disease and early season insect pressure.

Insecticidal technology traits such as Bollgard 3 require a small amount of refuge area to be planted as part of the Australian cotton industry’s Resistance Management Plan (RMP). The required area will vary depending on the amount of cotton grown and the technology choice selected. The aim of a refuge crop is to generate significant numbers of Helicoverpa moths which haven’t been exposed to Bollgard 3.

The types and requirements for the refuge crop can be found in the table below, and a refuge calculator too can be found at: bollgard3.com.au/refuge-calculator/
Table 2. Bollgard 3 refuge options.* Source: Bollgard 3 Resistance Management Plan.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Condition</th>
<th>% of Bollgard 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotton</td>
<td>Sprayed cotton refuge: an area of irrigated non-Bollgard 3 cotton, which can be conventionally managed for Helicoverpa spp. and other pests.</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>OR Unsprayed cotton refuge: an area of irrigated non-Bollgard 3 cotton, which will not be treated for any reason with any product that controls Helicoverpa spp.</td>
<td>5%</td>
</tr>
<tr>
<td>Pigeon Pea</td>
<td>Unsprayed pigeon peas which will not be treated for any reason with any products which control Helicoverpa spp. The pigeon pea crop is managed to ensure several cycles of flowering throughout the cotton season.</td>
<td>2.5%</td>
</tr>
</tbody>
</table>

*Southern QLD, NSW & VIC only. Please refer to Bollgard 3 Resistance Management Plan for Central Queensland refuge options.

**Subject to an approved management plan by Bayer.
Precision planters are the predominant type of planter units used to plant cotton, allowing for accurate and uniform seed placement. While cotton has the ability to compensate for gaps or unevenness in the plant stand, a uniform plant establishment will contribute in easing crop management throughout the season.

A successful planting operation is influenced by a number of factors mentioned below.

Planter maintenance

Ensure the planter is well maintained and ready to go well before planting time. Breakdowns in the field can rob time and allow planting moisture to disappear.

Planter depth

Ideal depth depends on the method of establishment and the soil conditions. A simple rule of thumb is to use the “knuckle” method as a quick and easy measurement tool in the field.

Table 3. Generic recommendation for planting depth based on establishment method

<table>
<thead>
<tr>
<th>Establishment method</th>
<th>Ideal depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planting into moisture (rain or pre-irrigated)</td>
<td>2.5 and 4.5 cm (1 to 1.5 knuckles)</td>
</tr>
<tr>
<td>Planting dry and watering up</td>
<td>2.5 cm (1 knuckle)</td>
</tr>
</tbody>
</table>

Planting too shallow (< 2.5 cm) may mean the soil dries out before the seed has time to germinate and does not allow the seed coat to be removed through soil friction, which can stall crop development. Planting beyond 5 cm, even under ideal conditions, can also compromise establishment.

Planting speed

One of the keys to achieving a uniform seed placement is planter speed, where the aim is to plant with precision not speed. The ideal speed for planting cotton is between 8-10 km/hr. A desirable outcome of any speed is to eliminate the planter unit from bouncing, ideally having it sitting steady and stable as it moves along.
Establishing a cotton crop is a critical operation. It sets the standard for the entire season, influencing crop growth, development and management. If establishment is unsuccessful, it is difficult to manage and costly to rectify.

Plant once and do it right. Emergence is expected to occur within 7-14 days depending on factors such as planting depth, soil temperature and forecast. A faster rate of emergence is desirable, as the cotton plant emerges and starts to generate its own energy from sunlight. Cool temperatures will diminish root and shoot growth, reduce water and nutrient uptake and make seedlings more susceptible to attack from seedling disease and early season insect pests.

Table 4. The effect of temperature on cotton seedling survival and growth rate.

<table>
<thead>
<tr>
<th>Minimum soil temperature at 10 cm at 8am (AEST)</th>
<th>Seeds emerging and survival</th>
<th>Days to complete emergence</th>
</tr>
</thead>
<tbody>
<tr>
<td>10°C</td>
<td>56%</td>
<td>29</td>
</tr>
<tr>
<td>14°C</td>
<td>73%</td>
<td>17</td>
</tr>
<tr>
<td>18°C</td>
<td>90%</td>
<td>5</td>
</tr>
</tbody>
</table>

It is important to monitor the soil temperature and air temperature to find an appropriate planting window. It had been an Australian cotton industry guideline that cotton planting should not begin before soil temperatures reach 14°C or above at 10 cm depth, at 8.00 am. In some regions, it can be difficult to obtain such temperatures in early October and therefore a forecast for a rising air temperature is utilised in conjunction with soil temperatures, in order to time planting to provide seed with the best chance of emergence. There may be a FastStart soil temperature monitor station located near you (www.csd.net.au/soil_temperatures). Always check the soil temperature before you plant.

HAVE YOU GOT THE GREEN LIGHT FOR COTTON PLANTING THIS SEASON?

Planting the cotton crop is one of the most important operations on the farm. It sets the standard for the entire season. There are some key considerations that will help ensure that it is a once-only task.

- **RED LIGHT**
 - Soil temperature at 10 cm depth above 14°C at 8am (AEST).

- **AMBER LIGHT**
 - Forecast average temperatures for the week following planting on a rising plane.

- **GREEN LIGHT**
 - All other cases.

STOP! STEADY! GO!
High soil temperatures
There has been a lot of research into the effects of cool temperatures on seedling establishment. As the planting window for Bollgard 3 cotton is widened, so too is the possibility of planting into summer temperatures in Central Queensland, west and south west Queensland and north west New South Wales. High temperatures can reduce seedling establishment and in extreme conditions, can kill the seed and seedling.

Seed quality
All CSD seed has a minimum germination of 80% at the point of sale product (majority are a lot higher than this). Germination percentages for individual AUSlots are available on the CSD website (www.csd.net.au) or by contacting CSD’s laboratory operations on (02) 6795 0000.

Seedling survival is rarely 100%, so growers should never rely on seeds planted per hectare and plants established per hectare being the same.

Seed density
Some cotton varieties have lower seed density which means that when conditions are less than ideal, the variety will have lower seedling vigour and in turn, establishment.

When planting varieties with lower seed densities, growers should take extra care and attention to detail with both land preparation and planting operations to ensure adequate establishment is achieved.

Plant populations
The overall aim is to establish a healthy and uniform plant population of 8-12 plants per linear metre. A rule of thumb that CSD recommends is to aim for a plant population of 10 plants established in areas north of Dubbo, NSW and 12 plants established for cooler areas south of Dubbo.

The number of seeds dropped is determined by several factors:
1. Soil type and seed bed condition
2. Germination percentages of seed
3. Seedling mortality through disease or insects
4. Establishment method
5. Temperature conditions

Figure 3
Summary of CSD plant population trials from the past 9 seasons. (21 irrigated and 9 dryland trials)
Impacts of low and high plant populations on crop management

Table 5. Impacts of low and high plant populations on crop management

<table>
<thead>
<tr>
<th>Low plant populations (below 8 plants/m)</th>
<th>High plant populations (higher than 15 plants/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plants will be larger as they spread out and grow into gaps.</td>
<td>Plants will be taller, although more compact and with more even fruit distributions.</td>
</tr>
<tr>
<td>Plants may start fruiting earlier, but be later in maturing.</td>
<td>Plants will start fruiting later, putting on more vegetative nodes delaying fruiting.</td>
</tr>
<tr>
<td>More fruit is concentrated on vegetative branches closer to ground level.</td>
<td>More fruit is concentrated on main stem fruiting branches and in first position.</td>
</tr>
<tr>
<td>At very low populations, plant cut-out will be delayed.</td>
<td>No delay or improvement in maturity.</td>
</tr>
<tr>
<td>Decreased picking efficiency due to blockages and difficulties in picking large plants.</td>
<td>Picking efficiency will be improved.</td>
</tr>
<tr>
<td>More difficulty in controlling plants in post harvest operations (e.g. root cutting).</td>
<td>Easier to control plant in post picking operations.</td>
</tr>
</tbody>
</table>

Plants per metre of row, plants per hectare

Table 6. Plants per metre of row, plants per hectare

<table>
<thead>
<tr>
<th>Row spacing</th>
<th>Plants per metre of row</th>
<th>Plants per hectare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plants/m</td>
<td>30 inch (75 cm)</td>
<td>40 inch (1 m)</td>
</tr>
<tr>
<td>10</td>
<td>133,333</td>
<td>100,000</td>
</tr>
<tr>
<td>12</td>
<td>160,000</td>
<td>120,000</td>
</tr>
<tr>
<td>14</td>
<td>186,667</td>
<td>140,000</td>
</tr>
<tr>
<td>16</td>
<td>213,333</td>
<td>160,000</td>
</tr>
<tr>
<td>18</td>
<td>239,999</td>
<td>180,000</td>
</tr>
</tbody>
</table>

Seeding rate calculator example

Table 7. Seedling rate calculator example

Example (75 cm rows)

<table>
<thead>
<tr>
<th>Your desired plant stand</th>
<th>10 plants/m 133,333 plants/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divide by the estimate of survival</td>
<td>80% 133,333/0.8=166,666</td>
</tr>
<tr>
<td>Divide by germination % of seed</td>
<td>95% 166,666/0.95=175,438</td>
</tr>
<tr>
<td>Your seeding rate</td>
<td>175,438 seeds/ha 13.2 seeds/m</td>
</tr>
<tr>
<td>Divide by the seed/kg for the variety</td>
<td>Sicot 746B3F 11,425 175,438/11,425=15.36</td>
</tr>
<tr>
<td>Seed/ha required</td>
<td>15.36 kg/ha</td>
</tr>
</tbody>
</table>
PEST CONTROL

Insect pests

Cotton, like most field crops, can be attacked by a range of insect pests during the season. For this reason, it is very important to employ an experienced crop consultant/agronomist to regularly monitor the crop and help you make pest management decisions.

While there are numerous products registered for the control of various cotton pests; many insecticides, if used at the wrong time, can cause more problems than they solve by disrupting the balance of natural pest enemies ('beneficials'), which can subsequently flare secondary pests, requiring further, harsher control.

Table 8. Common cotton pests

<table>
<thead>
<tr>
<th>Pest</th>
<th>Crop stage</th>
<th>Where found?</th>
<th>Does Bollgard 3 control?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helicoverpa spp. (Heliothys)</td>
<td>All season</td>
<td>Attacks fruit and terminal buds</td>
<td>Yes</td>
</tr>
<tr>
<td>Soil pests -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True wireworm (Agrypnus sp.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>False wireworm (Gonocephalum spp. Pterahelaeus spp.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black field earwig (Nala lividipes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symphyla (Hanseniella spp.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrips (various species)</td>
<td>Emergence until squaring (are also a beneficial insect)</td>
<td>‘Rasps’ leaves of young seedling</td>
<td>No</td>
</tr>
<tr>
<td>Silverleaf whitefly (Bemisia tabacci)</td>
<td>All season but mainly concentrated late season</td>
<td>Underside of leaves, secretes honeydew</td>
<td>No</td>
</tr>
<tr>
<td>Green mirid (Creontiades dilutus)</td>
<td>Flowering and boll fill</td>
<td>Attacks fruit and terminal buds</td>
<td>No</td>
</tr>
<tr>
<td>Cotton aphid (Aphis gossypii)</td>
<td>All season</td>
<td>Underside of leaves, secretes honeydew</td>
<td>No</td>
</tr>
<tr>
<td>Green vegetable bug (Nezara viridula)</td>
<td>Flowering and boll fill</td>
<td>Attacks fruit and terminal buds</td>
<td>No</td>
</tr>
<tr>
<td>Two spotted spider mites (Tetranynchus urticae)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solenopsis mealybug (Phenacoccus solenopsis)</td>
<td>All season</td>
<td>Underside of leaves or grouped on stems</td>
<td>No</td>
</tr>
</tbody>
</table>

If you want to know more about pest management in cotton:
Disease pathogens

A disease occurs when a pathogen is exposed to a susceptible host variety and the environment is favourable for an infection to take place. A disease can be controlled by excluding or eliminating the pathogen, growing a resistant variety or by modifying the environment.

The pathogen

If pathogens are not present in an area – then don’t introduce them! Several of the worst diseases of cotton are caused by pathogens that can be carried in dirt and crop residues attached to vehicles and machinery. Always practice good farm hygiene. Insist that vehicles and machinery, and even boots, are cleaned before leaving a farm – so that they are clean when arriving at the next farm.

“COME CLEAN - GO CLEAN”.

Table 9. Common cotton diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>Crop stage</th>
<th>Crop symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seedling diseases</td>
<td>Germination and emergence</td>
<td>Pre-emergent seed rot, post emergent damping off, slow early season growth, lesions on roots</td>
</tr>
<tr>
<td>Black root rot</td>
<td>Emergence</td>
<td>Stunted, slow early season growth, blackening of the roots</td>
</tr>
<tr>
<td>Verticillium wilt</td>
<td>All season</td>
<td>Yellow mottling of the leaves, stem vascular discoloration, plant death</td>
</tr>
<tr>
<td>Fusarium wilt</td>
<td>All season</td>
<td>Yellow mottling of the leaves, stem vascular discoloration, plant death</td>
</tr>
<tr>
<td>Alternaria leaf spot</td>
<td>After canopy closure</td>
<td>Brown or grey spots on leaves and bolls with purple margins</td>
</tr>
<tr>
<td>Boll rot, seed rot and tight lock</td>
<td>After boll opening</td>
<td>Rotting of the boll or cotton not fluffing once opened</td>
</tr>
<tr>
<td>Cotton bunchy top</td>
<td>All season</td>
<td>Pale green angular patches on leaves, small or short leaves, internodes and bolls</td>
</tr>
</tbody>
</table>

The only fungicides registered for use on cotton in Australia are seed treatments for the control of the seedling disease complex that causes pre- and post-emergent ‘damping off’ of seedlings. All cotton seed in Australia is supplied with a standard fungicide seed treatment.
PEST CONTROL

The host
All Australian cotton varieties are completely resistant to bacterial blight and have some high tolerances to Fusarium wilt, Verticillium wilt and Alternaria leaf spot. Nematodes and many of the fungal pathogens can also attack cotton. Seed treatments are available that can ‘turn on’ the cotton plant’s natural defence mechanisms and provide increased resistance to some pathogens.

Crop nutrition is also important. Cotton plants that are deficient in potassium are very susceptible to Alternaria leaf spot.

The environment
The environment can be manipulated by adjusting the planting date so that boll opening and cotton picking occur at the driest time of the year and fibre damage and down-grading are minimised. Good crop management to prevent tall rank growth can significantly reduce the incidence of boll rots that thrive in the humid environment of a dense canopy.

Wet weather is usually a significant factor in disease development. There are several leaf pathogens that can infect cotton and cause various leaf spots, and even defoliation, when a maturing crop is exposed to an extended period of wet weather.

Weed control
Summer weeds are aggressive competitors to young cotton seedlings, robbing moisture, nutrients and light. It is therefore important to start the season from a clean fallow and to control early season weeds. Consideration should be given to any herbicide plant back restrictions, as some may require rainfall to assist with the breakdown of these chemicals.

Roundup Ready Flex has revolutionised weed control in the Australian cotton industry, however, the technology is one tool and should be used as part of an overall integrated weed management system. This is particularly the case in high weed density situations. Utilise residual herbicides and inter-row cultivation or manual weeding where required.

Using alternate modes of action has the additional benefit of minimising the risk of herbicide resistance.

Consult the Roundup Ready Flex Cotton Weed Management Guide for clear recommendations for weed control practices in a Roundup Ready Flex cotton crop. The guide includes a range of herbicides which offer different modes of action throughout the season, reducing the risk of glyphosate resistance developing on your farm and saving you time and money in the future.

The Roundup Ready Flex cotton Weed Resistance Management Plan details strategies that can be implemented to minimise the risk of glyphosate resistance developing in weeds on-farm.

Both of these guides are available from bollgard3.com.au

Ensure cotton is fully destroyed post harvest, as then it becomes a woody weed which can host pests and diseases in between seasons. Effective control of volunteer and ratoon cotton will help to achieve resistance management, disease prevention and insect population control objectives. If volunteers are left uncontrolled in fallow areas, they can cause significant drying down of the soil profile reducing the available moisture being carried over for subsequent crops.

Your weed management strategy should be an ongoing discussion with your consultant/agronomist.

For further information visit the WeedSmart website. WeedSmart is an industry-led initiative to enhance on-farm practices and promote long term sustainability of herbicide use. www.weedsmart.org.au

Additional information is also available from Bayer on Volunteer and Ratoon cotton management. Visit bollgard3.com.au to download a copy of the Bollgard 3 Resistance Management: Control of Volunteer and Ratoon Cotton.
Engage your consultant to help formulate a water budget, and to assist in monitoring soil moisture levels and with scheduling irrigation timing. Correct budgeting of water requirements will ensure irrigation is available to finish the crop, a potentially critical factor in hot and dry seasons. Additionally, it is important to understand the capacity of your system and the daily amount can be used to irrigate.

Once in the swing of the season, there is some rhythm to scheduling irrigations based on soil water deficit and climatic conditions. However, both the first and last irrigations can be tricky to time correctly.

First irrigation is timed to maximise root expansion and crop growth at first flower. At first flower, the aim is to have a healthy, actively growing plant which has the desired architecture, framework and leaf area to develop a boll load. The timing of the irrigation is critical and a delicate balancing act in keeping the crop growing healthily, without hindering root expansion and ensuring minimal waterlogging. The irrigation around first flower is a critical decision not only for the reasons stated above, but also it plays an important role in ensuring the growth targets desired at first flower are met.

In Bollgard 3 crops there is greater impact of mistiming the early irrigations around squaring and first flower, due to the higher fruit retention levels and fruit load which require careful management and monitoring.

Last irrigation should be timed to ensure that the soil profile is dry at defoliation and boll maturity is complete. At this time of the season, it will take about 45-55 days from last effective flower (cut out) to crop maturity, and sometimes longer in shorter season areas. Given that daily water use is reduced in the later stages of a crop’s growth, and presuming there is a full profile, the crop should be able to rely on stored soil water for the last 25-30 days of growth (on most clay soils). Therefore, irrigation water should only be required for the first 20-25 days after last effective flower, although two irrigations may be required if soil moisture conditions are not optimal.
Utilise your consultant/agronomist to monitor crop growth and progress, as well as insect pests and disease, and to prescribe methods of control, if required. A consultant/agronomist can provide a fresh set of eyes and will also have an understanding of where the crop should be up to based on their knowledge of other crops in the district. Critical aspects which your consultant can assist with are growth rates, plant height management and fruit retention.

Cotton is a responsive crop to manage, so growers are able to monitor and manipulate the cotton plant to maximise yield and ease of management. As mentioned earlier, the rate of growth of a cotton crop is determined by temperature and thus depending on the temperature, follows a specific pattern.

Due to this predictability, it allows for management and monitoring to influence crop growth and development. Using the relationship between the rate of development and temperature, a measure of crop progress is described as Day Degrees.

Day Degrees calculation:
\[DD = \frac{(\text{max. temp} - 12) + (\text{min. temp} - 12)}{2} \]

When the temperature is below 12°C, the cotton plant processes cease, and the plant experiences what is termed as cold shock, where the cotton plant’s development is retarded. To ensure good early season growth, it is vital to limit the number of cold shock events to which young cotton seedlings are exposed.

Table 10. Day Degrees

<table>
<thead>
<tr>
<th>Crop phase</th>
<th>Day Degrees</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sowing to emergence</td>
<td>80</td>
<td>7-14</td>
</tr>
<tr>
<td>Growth of one node</td>
<td>40</td>
<td>3-4</td>
</tr>
<tr>
<td>Sowing to first square</td>
<td>505</td>
<td>30-40</td>
</tr>
<tr>
<td>Sowing to first flower</td>
<td>777</td>
<td>60-70</td>
</tr>
<tr>
<td>Open boll</td>
<td>1530</td>
<td>110-130</td>
</tr>
<tr>
<td>Sowing to 80% open</td>
<td>2050</td>
<td>160-200</td>
</tr>
</tbody>
</table>

Aim to have the crop achieve the following key parameters (developed from CSD’s Ambassador Network).

Establishment

Table 11. Establishment

<table>
<thead>
<tr>
<th>Soil temperature</th>
<th>Forecast temperature</th>
<th>Established plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>14°C at 8.00 am</td>
<td>Rising</td>
<td>8-12 plants/m</td>
</tr>
</tbody>
</table>
First flower

Table 12. First flower

<table>
<thead>
<tr>
<th>Total nodes</th>
<th>NAWF</th>
<th>1st position retention</th>
<th>Vegetative growth rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>8+</td>
<td>80%</td>
<td>90%</td>
</tr>
</tbody>
</table>

Cut-out

Table 13. Cut-out

<table>
<thead>
<tr>
<th>Total nodes</th>
<th>Squaring nodes</th>
<th>Plant height</th>
<th>Bolls/m</th>
<th>Vegetative growth rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>18</td>
<td>100-105 cm</td>
<td>180+</td>
<td>5-6 cm</td>
</tr>
</tbody>
</table>

End-of-season

Table 14. End-of-season

<table>
<thead>
<tr>
<th>Total nodes</th>
<th>Squaring nodes</th>
<th>Plant height</th>
<th>Bolls/m</th>
<th>Final retention %</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>18</td>
<td>100-105 cm</td>
<td>150+</td>
<td>65%</td>
</tr>
</tbody>
</table>

Plant growth regulation

Utilise plant growth regulators to manage excessive growth. Excessive rank growth is inefficient, and can lead to boll rots, increase defoliation costs and reduced penetration of insecticides and fungicides.

Generally, there are two times when growth regulation is applied in cotton.

1. In the lead-up to flowering to ensure a balance between the reproductive and vegetative growths. Applications at this time to correct excessive growth have shown improvements in yield.

2. At cut-out to shut any excessive growth late in the season down. The main purpose is to even the crop up and to concentrate the plant in filling the later set bolls.
FLOWERING TO CUT-OUT IS A CRITICAL TIME

Critically, the period from flowering to cut out is when up to 90% of the crop yield is set. It is therefore paramount to ensure that the plant/crop grows actively and is healthy through this period. Depending on the regional season length, a major aim throughout this period is to extend the flowering period for as long as possible. Crops approaching cut-out too rapidly are stressed and cannot support the fruit load.

A crop’s Nodes Above White Flower (NAWF) will always decrease to a point where it ‘cuts out’ (four NAWF). This is when there are not enough resources to continue producing additional nodes because the “boll load” is taking most of the plant’s photosynthate. The aim is to extend the period till the crop reaches four NAWF for as long as possible within season length constraints. There are limitations; the season length will determine the Day Degrees required in filling later bolls.

The longer the flowering period, the more potential to set more bolls, so the yield potential increases. Studies have shown a positive trend of increased boll numbers as the flowering period is extended.

To extend the flowering period it is important to host a “happy plant” through good crop management. The key is to keep the plant happy through minimisation of:

- Moisture stress, irrigation scheduling and timing
- Nutritional stress
- Weeds, insects and disease

Crop monitoring through this period should include tracking crop water use and irrigation scheduling, monitoring of nutritional requirements through petiole testing, and ensuring fruit retention and accumulated numbers are tracking to the desired target.
Do not defoliate too early - time defoliation to ensure the crop and fibre is mature. Defoliating too early can lead to immature cotton fibres, which can cause problems in the dyeing of the fabric later in the processing chain. Your consultant can assist with the timing of the defoliation operation through varying methods:

1. Four Nodes Above Cracked Boll (NACB). Physiologically, the last harvestable boll is mature when the boll four nodes down have begun to open up (cracked).

2. When the crop reaches 60% open. This is determined through simply counting the number of open bolls compared to the total number of bolls.

3. Cutting bolls and looking for mature seeds. Bolls should be firm to cut, even with a sharp knife; the contents of the seed should be fully formed and the seed coat turned from translucent to tan or black.

Harvest is a good time in the Australian cotton industry, but it is also a time when long hours, tight schedules and heavy machinery mix. Safety is paramount, so it is important to ensure procedures and protocols are put in place to minimise the risk of injury. All staff, including contractors, should be made aware of powerlines, especially with tall and unfolding machinery.

Growers looking to utilise the services of a picking contractor should consult Cotton Australia’s ‘Pick N Match’ service, which helps bring growers and contractors together.

Pick on time and without delay. Cotton has the ability to weather some adverse climatic conditions but can be prone to downgrades in fibre quality. Soil compaction is an issue associated with wet picking, due to the size of the machinery. Impacts can be minimised by timing the last irrigation to assist with drying the soil profile down, as well as not re-entering field too early post rainfall.

Do not pick if seed cotton moisture is greater than 12%. This can cause ginning fibre quality issues which could lead to discount penalties of your cotton. Some signs that cotton is too wet to pick are:

1. If moisture is evident on your vehicle
2. If you can feel moisture at all on the bolls
3. Seeds inside the lint do not crack if bitten
4. You are experiencing picker head door blockages or the picker is throwing cotton out the front
5. It is after 9.00 pm – good picking conditions are rare in the late evening

The aim is to have good quality cotton from the gin, free of downgrades and to have the highest turn out possible. This is achieved through a proper defoliation and picking under the right conditions.
Ensure your cotton crop is destroyed post picking. As a perennial crop, cotton can regrow into ratoon plants post defoliation/picking, and can:

1. Act as a weed, robbing moisture and nutrients
2. Act as a bridge to host insect pests and diseases
3. Lead to resistance build up
4. Be costly to control

Conduct a pupae-busting operation, if required under your resistance management plan. This pass can be utilised for additional purposes such as planting another crop or remedial action to repair soil constraints such as compaction, or to place immobile nutrients such as potassium and phosphorus deep into the soil profile.

If a pupae-busting activity is not required, growers should undertake additional tactics, such as root cutting, to prevent and control any ratoon cotton growth.

The Resistance management: control of volunteer and ratoon cotton biotech topic is a helpful reference and is available at bollgard3.com.au
Cotton Seed Distributors – Extension and Development

JORIAN MILLYARD
Extension and Development Manager - NSW
0428 950 009
jmillyard@csd.net.au

ALICE CURKPATRICK
Gwydir Valley
0418 818 142
acurkpatrick@csd.net.au

BOB FORD
Namoi Valley and Walgett
0428 950 015
bford@csd.net.au

ANGUS MARSHALL
Northern NSW
0428 950 054
amarshall@csd.net.au

CRAIG MCDONALD
Central NSW
0484 515 566
cmcdonald@csd.net.au

LUCY BURROWS
Central and Southern NSW
0428 950 035
lburrows@csd.net.au

SAM LEE
Extension and Development Manager – Queensland
0427 457 236
sam@csd.net.au

STEWARD BROTHERTON
Central Queensland
0455 682 068
stewardb@csd.net.au

CHRIS BARRY
Darling Downs, Burnett and Fraser Coast
0491 212 705
cbarry@csd.net.au

CHRIS TEAGUE
Border Rivers and Balonne
0428 950 021
cteague@csd.net.au

LARISSA HOLLAND
Queensland
0428 950 003
lholland@csd.net.au

JAMES QUINN
Marketing, Extension and Development Lead
0428 950 028
jquinn@csd.net.au

EMMA BROTHERTON
Regional Business Manager
Central Queensland
& Dawson/Callide
0457 436 741
emma.brotherton@bayer.com

MICK FING
 Regional Business Manager
Darling Downs & St George/Dirranbandi
0417 305 717
michael.fing@bayer.com

DEAN WHITTON
Regional Business Manager
Namoi & Walgett
0447 328 619
dean.whitton@bayer.com

PAUL BRADY
National Business Manager – Cotton Expansion
0409 935 513
paul.brady@bayer.com

MARK DAWSON
Sales Lead
0428 106 090
mark.dawson@bayer.com

LUKE SAMPSON
Regional Business Manager
Lachlan, Macquarie, Bourke & Southern NSW
0427 701 986
luke.sampson@bayer.com

Monsanto Australia Pty Ltd
Level 12, 600 St Kilda Road
Melbourne, VIC 3004
Phone (03) 9522 7222
Fax (03) 9522 6122
au.smarterfarming.info

For more information visit www.acresofopportunity.com.au, contact your CSD Extension and Development Agronomist or your Bayer Regional Business Manager.